Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Sci Rep ; 14(1): 9387, 2024 04 24.
Article En | MEDLINE | ID: mdl-38653765

The study aimed to compare various toothpastes and mouthwashes on permanent tooth dentin after erosive and abrasive challenges. 130 sound premolars dentin were randomly submitted to an initial erosive challenge and a cycle of erosive and abrasive challenges for five days. The five experimental groups (n = 26) were: (1) Control group (artificial saliva), (2) Elmex erosion protection toothpaste and mouthwash, (3) Vitis anticaries biorepair toothpaste and mouthwash, (4) Oral B Pro-expert toothpaste and Oral B Fluorinse mouthwash, and (5) MI Paste ONE toothpaste and Caphosol mouthwash. Microhardness, surface roughness values, and the topographical characteristics of the dentin surface were assessed. The highest percentage of recovered dentin microhardness (%RDMH) value was observed in groups 2 and 4, followed by groups 5 and 3, respectively. The %RDMH values in groups 2 and 4 did not demonstrate a significant difference (p = 0.855). The highest percentage of improvement in surface roughness was recorded in groups 2 and 4, with no significant differences (p = 0.989). The atomic force microscopy (AFM) findings were consistent with the surface roughness data. The best recovery of dentin microhardness and roughness were measured with the Elmex and Oral B toothpaste and mouthwash, followed by MI Paste ONE toothpaste and Caphosol mouthwash and Vitis anticaries biorepair toothpaste and mouthwash.


Dentin , Mouthwashes , Tooth Erosion , Toothpastes , Toothpastes/pharmacology , Mouthwashes/pharmacology , Humans , Dentin/drug effects , Tooth Erosion/prevention & control , Surface Properties , Hardness , In Vitro Techniques
2.
Environ Res ; 219: 114995, 2023 02 15.
Article En | MEDLINE | ID: mdl-36529324

A crucial problem that needs to be resolved is the sensitive and selective monitoring of chlorophenol compounds, especifically 4-chlorophenol (4-CP), one of the most frequently used organic industrial chemicals. In light of this, the goal of this study was to synthesize Fe3O4 incorporated cellulose nanofiber composite (Fe3O4/CNF) as an amplifier in the development of a modified carbon paste electrode (CPE) for 4-CP detection. Transmission electron microscopy (TEM) was used to evaluate the morphology of the synthesized nanocatalyst, while differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) techniques were implemented to illuminate the electrochemical characteristics of the fabricated sensor. The ultimate electrochemical sensor (Fe3O4/CNF/CPE) was used as a potent electrochemical sensor for monitoring 4-CP in the concentration range of 1.0 nM-170 µM with a limit of detection value of 0.5 nM. As a result of optimization studies, 8.0 mg Fe3O4/CNF was found to be the ideal catalyst concentration, whereas pH = 6.0 was chosen as the ideal pH. The 4-CP's oxidation current was found to be over 1.67 times greater at ideal operating conditions than it was at the surface of bare CPE, and its oxidation potential decreased by about 120 mV. By using the standard addition procedure on samples of drinking water and wastewater, the suggested capability of Fe3O4/CNF/CPE to detect 4-CP was further investigated. The recovery range was found to be 98.52-103.66%. This study paves the way for the customization of advanced nanostructure for the application in electrochemical sensors resulting in beneficial environmental impact and enhancing human health.


Chlorophenols , Nanofibers , Water Pollutants , Humans , Carbon/chemistry , Cellulose , Electrochemical Techniques/methods , Electrodes
3.
Food Chem Toxicol ; 164: 113053, 2022 Jun.
Article En | MEDLINE | ID: mdl-35460823

Analysis of protein content of food is necessary for quality control and is essential for precise labeling. Protein analysis is an issue of great economic and social fondness. Cereals are one of the most important sources of protein in food, livestock and poultry feed. In this article, the technique of extracting protein in 4 types of grains and measuring it by the Bradford method is discussed. The results obtained from this method are compared with the data obtained by the Kjeldahl method. This comparison showed that the Bradford method is more accurate in measuring proteins. Extraction of protein using NaOH at pH 13 can be used as a modified method to release proteins in soybean meal and consequently a Fast and accurate high-performance laboratory determination method for protein content via the Bradford method. The optimum pH value was identified as that of 13 in optimum temperature 40 °C for maximum protein extraction yield (43.6%, w/w). The new method used in this paper has resulted in the measurement of grain protein in the shortest time and with the least toxicity and the highest accuracy.


Glycine max , Seeds , Edible Grain/chemistry , Proteins , Seeds/chemistry
4.
Food Chem Toxicol ; 165: 113075, 2022 Jul.
Article En | MEDLINE | ID: mdl-35487338

Brown HT and carmoisine, which are the most used dyestuffs in pharmaceuticals, textiles, cosmetics and foods, are important components of the Azo family. Although the Azo group is not toxic or carcinogenic under normal conditions, these dyestuffs require great care due to the reduction of the Azo functional group to amines. In particular, fast, reliable, easy, on-site and precise determinations of these substances are extremely necessary and important. In this review, the properties, applications, and electrochemical determinations of brown HT and carmoisine, which are used as synthetic food colorants, are discussed in detail. Up to now, sensor types, detection limits (LOD and LOQ), and analytical applications in the developed electrochemical strategies for both substances were compared. In addition, the validation parameters such as the variety of the sensors, sensitivity, selectivity and electrochemical technique in these studies were clarified one by one. While the electrochemical techniques recommended for brown HT were mostly used for the removal of dyestuff, for carmoisine they included fully quantitative centered studies. The percentiles of voltammetric techniques, which are the most widely used among these electroanalytical methods, were determined. The benefits of a robust electrochemical strategy for the determination of both food colors are summed up in this review. Finally, the brown HT and carmoisine suggestions for future perspectives in electrochemical strategy are given according to all their applications.


Food Coloring Agents , Naphthalenesulfonates , Azo Compounds , Electrochemical Techniques , Naphthalenesulfonates/chemistry
5.
Food Chem Toxicol ; 163: 112929, 2022 May.
Article En | MEDLINE | ID: mdl-35307455

This study provides a comprehensive review of the latest developments in the electrochemical impressions of the important dyestuffs including amaranth and carminic acid. Food colors are organic substances that have important effects on human health and food safety. While these substances do not pose a problem when used in the daily intake (ADI) amounts, they harm human health when consumed excessively. Amaranth and carminic acid are synthetic and natural food colors ingredients, respectively. Analysis of these substances in food, pharmaceutical, cosmetic and textile samples is extremely important because of their genotoxicity, cytostatic and cytotoxic effects. Electroanalytical methods, which have great advantages over traditional analytical methods, shed light on the scientific world. Electrochemical monitoring modules, which are fast, simple, accurate, reliable, and highly selective, are promising for the determination of both substances. Until now, amaranth and carminic acid food determinations have been carried out successfully with electrochemical monitoring techniques in many numbers in the literature. Voltammetric techniques are the most widely used among these electroanalytical methods. In particular, square wave and differential pulse voltammetric techniques, which have extraordinary properties, have been heavily preferred. Limits of detection (LOD) comparable to the standard analytical method have been achieved using these methods, which have very quick analysis durations, high precision and accuracy, do not require long preprocessing, and have great selectivity. In addition, more sensitive and selective analyses of amaranth and carminic acid in natural samples were carried out with numerous indicator electrodes. The merits of powerful electrochemical monitoring studies for the determination of both food colors during the last decade are presented in this study. Moreover, parameters such as analytical applications, detection limits, electrochemical methods, selectivity, working electrodes, and working ranges are summarized in detail.


Carmine , Food Coloring Agents , Amaranth Dye , Electrochemical Techniques/methods , Electrodes , Humans
6.
Food Chem Toxicol ; 162: 112907, 2022 Apr.
Article En | MEDLINE | ID: mdl-35271984

Synthetic azo dyes are widely used in a variety of industries, but many of them pose a risk to human health, particularly when consumed in large quantities. As a result, their existence in products should be closely monitored. D&C red 33 and Patent Blue V are mostly used in cosmetics, especially in toothpaste and mouthwashes. A novel carbon paste electrode modified with ZIF-8/g-C3N4/Co nanocomposite and 1-methyl-3-butylimidazolium bromide as an ionic liquid was employed as a highly sensitive reproducible electrochemical sensor for the simultaneous determination of these common dyes. ZIF structure has unique properties such as high surface area, suitable conductivity, and excellent porosity. The electrochemical behavior of the suggested electrode was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). To characterize the synthesized nanocomposites, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were applied to investigate the structure of nanocomposites. Under the optimized conditions, the modified sensor offered a wide linear concentration range 0.08-10 µM (R2 = 0.9906) and 10-900 µM (R2 = 0.9932) with a low limit of detection of 0.034 µM. The value of diffusion coefficient (D), and the electron transfer coefficient (α) was calculated to be 310 × 10-5, and 0.9 respectively. This technique offered a successful performance for the determination of target analyte in the real samples with acceptable results between 96% and 107%.

7.
Chemosphere ; 294: 133800, 2022 May.
Article En | MEDLINE | ID: mdl-35101429

Numerous people suffer from accidental or deliberate exposure to different pesticides when poisoning with aluminum phosphate (AlP) is increasing in the eastern countries. Aluminum phosphate is a conventional insecticide that quickly reacts with water or the moistures in the atmosphere and produces fatal phosphine gas, which absorbs quickly by the body. Oral consumption or inhalation of AlP leads to excessive reaction of the body such as fatigue, vomiting, fever, palpitation, vasodilatory shock, increasing blood pressure, cardiac dysfunction, pulmonary congestion, shortness of breath, and death. The garlic smell from the patient's mouth or exhale is one of the methods to recognize the positioning. Due to the lack of individual antidotes, several supportive treatments are required. The present study focused on the available and new therapies that help reduce the effect of AlP poisoning and the mortality rate. The therapies are divided into the antioxidant-related agent and the other agents. The impacts of each agent on the experimental cases are reported.


Insecticides , Organophosphate Poisoning , Pesticides , Phosphines , Poisoning , Aluminum Compounds , Antidotes/therapeutic use , Humans , Pesticides/toxicity , Poisoning/therapy
8.
Poult Sci ; 101(3): 101652, 2022 Mar.
Article En | MEDLINE | ID: mdl-35038649

Clostridium perfringens-induced necrotic enteritis (NE) is an economically important disease of broiler chickens. The present study evaluated the effect of C. perfringens on the intestinal histomorphometry, enteric microbial colonization, and host immune responses using 3 experimental NE reproduction methods. The experimental groups consisted of 1) unchallenged Control diet (corn-soybean meal), 2) Control diet + Eimera inoculation at d 11 followed by C. perfringens challenge at d 15 (ECp), 3) Wheat-based diet + C. perfringens challenge (WCp), and 4) Wheat-based diet + Eimeria inoculation followed by C. perfringens challenge (WECp). The results showed that chickens receiving ECp and WECp had reduced (P < 0.05) bird performance coupled with enteric gross lesions and epithelial damage at d 17 and 24 of age compared to unchallenged control birds. These ECp and WECp administered birds also had increased (P < 0.05) ileal colonization by clostridia and E. coli at d 17 and 24, while the resident Lactobacillus counts were reduced (P < 0.05) at d 24 of age. Furthermore, at d 24, jejunal transcription of IL-6, IL-10, annexin-A1 and IL-2 genes was upregulated (P < 0.05) in the ECp group, whereas the transcription of TNF receptor associated factor (TRAF)-3 gene was increased (P < 0.05) in WECp treated birds when compared to unchallenged control group. Additionally, stimulation of chicken splenocytes and cecal tonsilocytes with virulent C. perfringens bacilli or their secretory proteins resulted in a higher (P < 0.05) frequency of T cells and their upregulation of MHC-II molecule, as determined by flow cytometry. These findings suggest that C. perfringens, while inducing epithelial damage and changes in microbiota, can also trigger host immune responses. Furthermore, NE reproduction methods using coccidia with or without the wheat-based dietary predisposition seem to facilitate an optimal NE reproduction in broiler chickens and thus, may provide better avenues for future C. perfringens research.


Clostridium Infections , Enteritis , Poultry Diseases , Animals , Chickens , Clostridium Infections/pathology , Clostridium Infections/veterinary , Clostridium perfringens/physiology , Diet/veterinary , Enteritis/pathology , Enteritis/veterinary , Escherichia coli , Immunity , Necrosis/veterinary
9.
Food Chem Toxicol ; 161: 112830, 2022 Mar.
Article En | MEDLINE | ID: mdl-35077828

Ponceau dyes are one of the food coloring materials that are added to various pharmaceutical, health and food products and give them an appearance. These dyes contain contaminants such as Benzidine, 4-Aminobiphenyl, and 4-Aminoazobenzene that are safe in small amounts, but they are not approved by the US Food and Drug Administration (US-FDA) for human consumption. This study comprehensively was reviewed the properties, applications, chemistry, and toxicity of Ponceau dyes as food colorant substances. Electroanalysis of Ponceau dyes was discussed in detail, and the various electrochemical sensors used to detect and monitor these dyes as food colorant were examined. The applied methods of removing and degradation of these dyes in municipal and industrial wastes were also discussed. Conclusions and future perspectives to motivate future research were also explored.


Azo Compounds/chemistry , Electrochemical Techniques/instrumentation , Food Coloring Agents/chemistry , Food Analysis , Food Contamination , Humans , Molecular Structure , Oxidation-Reduction
10.
J Hazard Mater ; 423(Pt A): 127058, 2022 02 05.
Article En | MEDLINE | ID: mdl-34488091

Cyanazine is a beneficial herbicide in the triazines group that inhibits photosynthesis in plants and monitoring of this herbicide is so important for study agriculture products. The present researches have been focused on monitoring of cyanazine by a straightforward and fast electrochemical strategy. Herein, to monitor the cyanazine level, Pt and Pd doped CdO nanoparticle decorated SWCNTs composite (Pt-Pd-CdO/SWCNTs) has been synthesized as a conductive mediator and characterized by EDS, SEM and TEM techniques. The Pt-Pd-CdO/SWCNTs and ds-DNA have been used for modification of the gold electrode (GE). Moreover, the oxidation signal of guanine relative to ds-DNA at the surface of Pt-Pd-CdO/SWCNTs/ds-DNA/GE has been considered as an bioelectroanalytical issue to monitoring cyanazine for the first time. Electrochemical impedance spectroscopic (EIS) signals have confirmed that the inclusion of Pt-Pd-CdO/SWCNTs at the surface of the GE has lowered charge-transfer resistance by ca.1.54 times and created a highly conductive state for monitoring of cyanazine in nanomolar concentration. On the other hand, differential pulse voltammograms (DPV) of Pt-Pd-CdO/SWCNTs/ds-DNA/GE have indicated a linear dynamic range of 4.0 nM-70 µM with a detection limit of 0.8 nM to the monitoring of cyanazine. In addition, the molecular docking study has emphasized that cyanazine herbicide is capable of binding to ds-DNA preferably at the guanine-cytosine rich sequences, and confirmed experimental results. In the final step, Pt-Pd-CdO/SWCNTs/ds-DNA/GE has been successfully utilized for the monitoring of cyanazine herbicide in food and water samples.


Biosensing Techniques , Herbicides , Nanoparticles , DNA , Electrochemical Techniques , Electrodes , Hazardous Substances , Herbicides/toxicity , Molecular Docking Simulation , Triazines
11.
Chemosphere ; 287(Pt 2): 132187, 2022 Jan.
Article En | MEDLINE | ID: mdl-34509007

In this work, we report a novel enzymatic biosensor based on glutathione peroxidase (GSH-Px), graphene oxide (GO) and nafion for the electrochemical sensing of glutathione (GSH) in body fluids. GSH-Px was immobilized covalently via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto modified glassy carbon electrode (GCE) decorated with GO and nafion and successfully used for sensing of GSH in the presence of H2O2 as catalyst with Michaelis-Menten constant about 0.131 mmol/L. The active surface are of GCE improve from 0.183 cm2 to 0.225 cm2 after modification with GO. The introduced biosensor (GSH-Px/GO/nafion/GCE) was used for monitoring of GSH over the range 0.003-370.0 µM, with a detection limit of 1.5 nM using differential pulse voltammetric (DPV) method. The GSH-Px/GO/nafion/GCE was successfully applied to the determination of GSH in real samples.


Biosensing Techniques , Body Fluids , Glutathione , Graphite , Hydrogen Peroxide
12.
Nanoscale Res Lett ; 16(1): 144, 2021 Sep 16.
Article En | MEDLINE | ID: mdl-34529188

Brucellosis is considered as the most common bacterial zoonosis in the world. Although the laboratory findings are the most reliable diagnosis today, the current laboratory methods have many limitations. This research aimed to design and evaluate the performance of a novel technique based on the localized surface plasmon resonance (LSPR) to eliminate or reduce existing shortcomings. For this purpose, smooth lipopolysaccharides were extracted from Brucella melitensis and Brucella abortus and fixed on the surface of the gold nanoparticles through covalent interactions. After some optimizing processes, dynamic light scattering was used to characterize the probe. The detection of captured anti-Brucella antibody was performed by measuring the redshift on LSPR peak followed by the determination of cutoff value, which indicated a significant difference between controls and true positive patients (P value < 0.01). Furthermore, 40 sera from true negative samples and positive patients were used to evaluate the performance of this method by comparing its outcomes with the gold standard (culture), standard tube agglutination test, and anti-brucellosis IgM and IgG levels (ELISA). The sensitivity, specificity, positive predictive value, and negative predictive value showed an appropriate performance of the LSPR-based method (85%, 100%, 100%, and 86%, respectively). The current research results provide a promising fast, convenient, and inexpensive method for detecting the anti-Brucella antibodies in human sera, which can be widely used in medical laboratories to diagnose brucellosis quickly and effectively.

13.
J Biomed Phys Eng ; 11(2): 229-238, 2021 Apr.
Article En | MEDLINE | ID: mdl-33937129

BACKGROUND: Ionizing radiation plays a significant role in cancer treatment. Despite recent advances in radiotherapy approaches, the existence of irradiation-resistant cancer cells is still a noteworthy challenge. Therefore, developing novel therapeutic approaches are still warranted in order to increase the sensitivity of tumor cells to radiation. Many types of research rely on the role of mitochondria in radiation protection. OBJECTIVE: Here, we aimed to target the mitochondria of monocyticleukemia (THP-1) radio-resistant cell line cells by a mitochondrial disrupting peptide, D (KLAKLAK)2, and investigate the synergistic effect of Gamma-irradiation and KLA for tumor cells inhibition in vitro. MATERIAL AND METHODS: In this experimental study, KLA was delivered into THP-1 cells using a Cell-Penetrating Peptide (CPP).The cells were then exposed to gamma-ray radiation both in the presence and absence of KLA conjugated with CPP. The impacts of KLA, ionizing radiation or combination of both were then evaluated on the cell proliferation and apoptosis of THP-1 cells using MTT assay and flow cytometry, respectively. RESULTS: The MTT assay indicated the anti-proliferative effects of combined D (KLAKLAK)2 peptide with ionizing radiation on THP-1cells. Moreover, synergetic effects of KLA and ionizing radiation reduced cell viability and consequently enhanced cell apoptosis. CONCLUSION: Using KLA peptide in combination with ionizing irradiation increases the anticancer effects of radio-resistant THP-1 cells. Therefore, the combinational therapy of (KLAKLAK)2 and radiation is a promising strategy for cancer treatment the in future.

14.
Chemosphere ; 281: 130795, 2021 Oct.
Article En | MEDLINE | ID: mdl-34022601

In the present study, gold nanoparticles were locally well-decorated on the surface of TiO2 using the tungstophosphoric acid (HPW), as UV-switchable reducing intermediate linkers. The prepared Au NPs/HPW/TiO2 nanostructure was characterized using FTIR, XRD, EDS, SEM and TEM, which confirmed the successful attachment of quasi-spherical Au NPs in the range of 20-30 nm on the surface of HPW modified TiO2. Also, the FTIR results show that the Au NPs were binded to TiO2 through the terminal the oxygen atoms HPW. The photocatalytic performance of prepared nanostructures was assessed in degradation of nitrobenzene. The nitrobenzene photodegradation kinetic study revealed that it well followed the Langmuir-Hinshelwood kinetic model with the apparent rate constant of 0.001 min-1 using anatase TiO2, 0.0004 min-1 using HPW, 0.0014 using HPW/TiO2, while it was obtained 0.0065 min-1 using Au NPs@HPW/TiO2 nanostructure. It shows that the photocatalytic rate of the prepared nanocomposites increased by 6.5- and 4.6-fold compared to photoactivity of anatase TiO2 and HPW/TiO2 respectively. Also, the photocatalytic mechanism of process was proposed. Moreover, the reusability study confirmed that its photocatalytic activity still remained high after three cycles.


Gold , Metal Nanoparticles , Catalysis , Titanium
15.
Biosens Bioelectron ; 184: 113252, 2021 Jul 15.
Article En | MEDLINE | ID: mdl-33895688

Potentiometric-based biosensors have the potential to advance the detection of several biological compounds and help in early diagnosis of various diseases. They belong to the portable analytical class of biosensors for monitoring biomarkers in the human body. They contain ion-sensitive membranes sensors can be used to determine potassium, sodium, and chloride ions activity while being used as a biomarker to gauge human health. The potentiometric based ion-sensitive membrane systems can be coupled with various techniques to create a sensitive tool for the fast and early detection of cancer biomarkers and other critical biological compounds. This paper discusses the application of potentiometric-based biosensors and classifies them into four major categories: photoelectrochemical potentiometric biomarkers, potentiometric biosensors amplified with molecular imprinted polymer systems, wearable potentiometric biomarkers and light-addressable potentiometric biosensors. This review demonstrated the development of several innovative biosensor-based techniques that could potentially provide reliable tools to test biomarkers. Some challenges however remain, but these can be removed by coupling techniques to maximize the testing sensitivity.


Biosensing Techniques , Biomarkers , Humans , Polymers , Potentiometry
16.
Environ Res ; 195: 110809, 2021 04.
Article En | MEDLINE | ID: mdl-33515581

In the present study, a novel 1-butyl-3-methylimidazolium bromide (BmImBr) impregnated chitosan beads were prepared and characterized using different methods, including XRD, FT-IR, EDX, SEM and BET. The FTIR analysis revealed that the BmImBr was successfully conjugated with the chitosan in the beads structure. The prepared beads were used as an efficient sorbent for the fast removal of methylene blue, as cationic dye model, from aqueous solution, whereas just 25 min was required to reach 86% removal efficiency. The increasing of BmImBr amount improved the adsorption performance of prepared beads. Also, it was found that the dye can be higher adsorbed on the beads surface by increasing the sorbent dosage and pH of solution, while the optimum dosage and pH were obtained 3 mg/L and 11, respectively. The kinetic study showed that the MB adsorption onto the CS-BmImBr beads follows the pseudo-fist order model and the intrinsic penetration controls the adsorption process. The properties of prepared chitosan- BmImBr IL conjugation confirmed that it can be exploited as an efficient adsorbent in the wastewater treatment.


Chitosan , Nanostructures , Water Pollutants, Chemical , Adsorption , Hydrogels , Hydrogen-Ion Concentration , Imidazoles , Kinetics , Spectroscopy, Fourier Transform Infrared
17.
J Econ Entomol ; 114(2): 684-693, 2021 04 13.
Article En | MEDLINE | ID: mdl-33479771

In many cases, pesticides' side effects on natural enemies have closely related to their exposure route. We assessed long-term lethal and sublethal effects of thiamethoxam (TMX) on the predatory bug, Orius albidipennis (Reuter), fed on Aphis gossypii Glover (Hemiptera: Aphididae), through three exposure routes. First-instar nymphs were treated with the maximum field recommended concentration (MFRC), ½ MFRC, and » MFRC of TMX for 24 h. Based on the results, the soil-application treatment (bottom-up effect: plant-aphid-predator) led to the lowest survival reduction. In contrast, leaf-dip (residual contact) and aphid-dip (oral exposure route) treatments decreased the survival severely. While the soil-application treatment had no significant effect on adult longevity and egg production, all tested concentrations of TMX in the leaf-dip and aphid-dip treatments negatively affected both traits. The egg hatchability was not affected by the insecticide in all exposure routes. Among all treatments, » MFRC of TMX in the residual contact and oral treatments shortened the egg incubation period compared to control, but others failed to affect it. Finally, based on the criteria provided by the International Organization for Biological and Integrated Control (IOBC) regarding toxicity classification, systemic (soil) application of TMX was harmless for this predator. However, it was moderately harmful and harmful (depending on concentration) to the predator through the residual contact and oral exposures, even at » MFRC. Given our results, the soil-application of TMX is compatible with O. albidipennis, and it can improve conservation approaches of the predator in the integrated management of A. gossypii.


Aphids , Heteroptera , Insecticides , Animals , Insecticides/toxicity , Predatory Behavior , Thiamethoxam
18.
Front Chem ; 8: 814, 2020.
Article En | MEDLINE | ID: mdl-33195033

An ultrasensitive DNA electrochemical biosensor based on the carbon paste electrode (CPE) amplified with ZIF-8 and 1-butyl-3-methylimidazolium methanesulfonate (BMIMS) was fabricated in this research. The DNA/BMIMS/ZIF-8/CPE was used for the selective determination of a mitoxantrone anticancer drug in aqueous solution, resulting in a good catalytic effect and a powerful ability for determining mitoxantrone. Also, the interaction of the mitoxantrone anticancer drug with guanine bases of ds-DNA was used as a powerful strategy in the suggested biosensor, which was confirmed with docking investigation. Docking study of mitoxantrone into the ds-DNA sequence showed the intercalative binding mode of mitoxantrone into the nitrogenous-based pairs of ds-DNA. The effective factors such as ds-DNA concentration, temperature, buffer types, and incubation time were also optimized for the fabricated mitoxantrone biosensor. The results showed that, under optimum conditions (T = 25°C; incubation time=12 min; pH= 4.8 acetate buffer solution and [DNA] = 50 mg/L), the DNA/BMIMS/ZIF-8/CPE could be used in mitoxantrone assay in a concentration ranging from 8.0 nM to 110 µM with a detection limit of 3.0 nM. In addition, recovery data between 99.18 and 102.08% were obtained for the determination of mitoxantrone in the injection samples using DNA/ZIF-8/BMIMF/CPE as powerful biosensors.

19.
Sci Rep ; 10(1): 17704, 2020 10 19.
Article En | MEDLINE | ID: mdl-33077741

Three hundred and sixty 1-day-old male broiler chicks were randomly allocated to 4 treatments of 6 replicates to evaluate the effects of cLFchimera, a recombinant antimicrobial peptide (AMP), on gut health attributes of broiler chickens under necrotic enteritis (NE) challenge. Treatments were as follows: (T1) unchallenged group fed with corn-soybean meal (CSM) without NE challenge and additives (NC); (T2) group fed with CSM and challenged with NE without any additives (PC); (T3) PC group supplemented with 20 mg cLFchimera/kg diet (AMP); (T4) PC group supplemented with 45 mg antibiotic (bacitracin methylene disalicylate)/kg diet (antibiotic). Birds were sampled for villi morphology, ileal microbiota, and jejunal gene expression of cytokines, tight junctions proteins, and mucin. Results showed that AMP ameliorated NE-related intestinal lesions, reduced mortality, and rehabilitated jejunal villi morphology in NE challenged birds. While the antibiotic non-selectively reduced the count of bacteria, AMP restored microflora balance in the ileum of challenged birds. cLFchimera regulated the expression of cytokines, junctional proteins, and mucin transcripts in the jejunum of NE challenged birds. In conclusion, cLFchimera can be a reliable candidate to substitute growth promoter antibiotics, while more research is required to unveil the exact mode of action of this synthetic peptide.


Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Enterocolitis, Necrotizing/veterinary , Gastrointestinal Microbiome/drug effects , Jejunum/drug effects , Poultry Diseases/drug therapy , Amino Acid Sequence , Animal Feed/analysis , Animals , Anti-Bacterial Agents/therapeutic use , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/therapeutic use , Bacitracin/pharmacology , Bacitracin/therapeutic use , Chickens , Colony Count, Microbial , Enterocolitis, Necrotizing/drug therapy , Enterocolitis, Necrotizing/immunology , Enterocolitis, Necrotizing/pathology , Jejunum/pathology , Poultry Diseases/immunology , Poultry Diseases/pathology , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Salicylates/pharmacology , Salicylates/therapeutic use
20.
Front Chem ; 8: 677, 2020.
Article En | MEDLINE | ID: mdl-32974271

Measuring the concentration of anticancer drugs in pharmacological and biological samples is a very useful solution to investigate the effectiveness of these drugs in the chemotherapy process. A Pt,Pd-doped, NiO-decorated SWCNTs (Pt,Pd-NiO/SWCNTs) nanocomposite was synthesized using a one-pot procedure and combining chemical precipitation and ultrasonic sonochemical methods and subsequently characterized by TEM and EDS analysis methods. The analyses results showed the high purity and good distribution of elements and the ~10-nm diameter of the Pt,Pd-NiO nanoparticle decorated on the surface of the SWCNTs with a diameter of about 20-30 nm. Using a combination of Pt,Pd-NiO/SWCNTs and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (1B23DTFB) in a carbon paste (CP) matrix, Pt,Pd-NiO/SWCNTs/1B23DTFB/CP was fabricated as a highly sensitive analytical tool for the electrochemical determination of daunorubicin in the concentration range of 0.008-350 µM with a detection limit of 3.0 nM. Compared to unmodified CP electrodes, the electro-oxidation process of daunorubicin has undergone significant improvements in current (about 9.8 times increasing in current) and potential (about 110 mV) decreasing in potential). It is noteworthy that the designed sensor can well measure daunorubicin in the presence of tamoxifen (two breast anticancer drugs with a ΔE = 315 mV. According to the real sample analysis data, the Pt,Pd-NiO/SWCNTs/1B23DTFB/CP has proved to be a promising methodology for the analysis and measuring of daunorubicin and tamoxifen in real (e.g., pharmaceutical) samples.

...